Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.

نویسندگان

  • V R K Vadapalli
  • J N Zvimba
  • M Mathye
  • H Fischer
  • L Bologo
چکیده

This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were used to neutralize AMD in a SBR with a hydraulic retention time (including settling) of 100 min and a sludge retention time of 360 min, by simultaneously monitoring the Fe(II) removal kinetics and overall assessment of the AMD after treatment. The Fe(II) kinetics removal and overall AMD treatment were observed to be highly dependent on the limestone grade used, with Fe(II) completely removed to levels lower than 50 mg/L in cycle 1 after 30 min using high quality or pure paper and pulp limestone. On the contrary, the other grade limestone, namely waste limestone, could only achieve a similar Fe(II) removal efficiency after four cycles. It was also noticed that suspended solids concentration plays a significant role in Fe(II) removal kinetics. In this regard, using pure limestone from the paper and pulp industry will have advantages compared with waste limestone for AMD neutralization. It has significant process impacts for the SBR configuration as it allows one cycle treatment resulting in a significant reduction of the feed stock, with subsequent generation of less sludge during AMD neutralization. However, the use of waste calcium carbonate from the paper and pulp industry as a feed stock during AMD neutralization can achieve significant cost savings as it is cheaper than the pure limestone and can achieve the same removal efficiency after four cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process

Acid mine drainage (AMD) containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nati...

متن کامل

A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals.

A series of pilot-scale tests were conducted with a continuous system composed of a stirring tank reactor, settling tank, and sand filter. In order to treat acidic drainage from a Pb-Zn mine containing high levels of heavy metals, the potential use of coal-mine drainage sludge (CMDS) was examined. The pilot-scale tests showed that CMDS could effectively neutralize the acidic drainage due to its...

متن کامل

Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key pro...

متن کامل

Comparison of Sludge Characteristics between Lime and Limestone/lime Treatment of Acid Mine Drainage

The U.S. Geological Survey, in cooperation with the Colorado School of Mines and the U.S. Environmental Protection Agency, has demonstrated the application of pulsed limestone bed (PLB) treatment of acid mine drainage (AMD) at the Argo tunnel discharge near Idaho Springs, Colorado. Current technology for AMD treatment at the Argo facility is neutralization with lime. However, lime neutralizatio...

متن کامل

Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental technology

دوره 36 19  شماره 

صفحات  -

تاریخ انتشار 2015